Exceptional service in the national interest

Progress on NCSP Training and Education Programs at Sandia

Allison Miller Sandia National Laboratories SAND2013 - XXXX

SNL Hands on Criticality Safety Training

Course

Sandia National Laboratories

- Course Attendance
- Course Content
- Experiments
 - Approach on Fuel
 - Approach on Moderator Height
 - Approach on Separation
 - Approach on Removal of Fuel

Course Attendance

May 2013	Feb 2013		Aug 2012	May 2012	Feb 2012
LANL	Savannah River Site		Washington River Protection Solutions	NSA	NNSA
Savannah River Remediation	NRC		WTP-Bechtel	NNSA	SAIC
Transport Logistics International	University of Florida		WTP-Bechtel	DOE-Richland	NNSA
Global Nuclear Fuels	Hanford		NRC	ORNL	SAIC
Global Nuclear Fuels	US Enrichment Corp.		DOE-ORP	DNFSB	LLNL
INL	SNL		INL	INL	PNNL
Iowa State University			Sellafield Ltd.	NRC	DOE-Idaho
Nuclear Waster Partnership		ı	NNSA	LANL	_
SNL			SNL	UNM	
LANL				LANL	
LANL				LANL	
				Columbia Basin College	
				DOE-Richland	

United States Department of Energy Nuclear Criticality Safety Program (NCSP)

Hands-On Training Water-Moderated Critical Experiments Sandia National Laboratories

	•					
Day	Module	Title				
	Module 00	Logistics				
Monday 8:30 AM - 5:00 PM	Module 01	Fundamentals of Nuclear Criticality Safety – Criticality Parameters				
	Module 02	Experiment Bases for Nuclear Criticality Safety				
	Module 03	Critical-Measurement Accident - Chelyabinsk-40 1958				
	Module 04	Subcritical Multiplication				
	Module 05	Design of SPRF/CX Critical Experiment				
	Module 06	Experiment 1 – Approach to Critical on Fuel Loading				
Tuesday	Module 07	Conduct of Operations				
8:00 AM - 5:00 PM	Module 08	Nuclear Instrumentation				
	Module 09	Critical-Measurement Accident – Kurchatov May 1971				
	Module 10	SPRF/CX Reactor Theory				
	Module 11	Reactor Kinetics				
Wednesday 8:00 AM- 5:00 PM	Module 12	Experiment 2 – Approach to Critical on Moderator Height				
	Module 13	Critical-Measurement Accident - Saclay/ALIZE 1960				
	Module 14	Nuclear Criticality Safety Data and Limits				
	Module 15	The International Criticality Safety Benchmark Evaluation Project				
	Module 16	Results from the Sandia Critical Experiments				
Thursday	Module 17	Experiment 3 – Approach to Critical on Fuel Separation				
8:00 AM - 5:00 PM	Module 18	Critical-Measurement Accident - Mol/VENUS 1965				
	Module 19	Critical-Measurement Accident – Arzamas-16/Sarov 1997				
	Module 20	Critical-Measurement Accident – Los Alamos 1945/1946				
	Module 21	ANS-1 Section 3.0, 4.0, 5.0				
	Module 22	Experiment 4 – Interior Fuel Rod Removal				
	Module 23	Light Water Reactor (LWR) Design				
Friday	Module 24	Fuel Depletion/Burnup				
8:00 AM - 3:00 PM	Module 25	LWR Fuel Paradigms				
	Module 26	Review of the Experiments				
	Exam	Closed-Book Exam				

Classroom discussions are interspersed through the experiments

- The basics of criticality safety
- Criticality safety data and limits
- Historic critical experiments
- Subcritical multiplication
- Reactor theory and kinetics
- Description of selected critical mass accidents
- The design and operation of critical experiments at Sandia
- Radiation detection in the experiments
- Results of Sandia critical experiments
- The development and use of critical experiment benchmarks
- Light water reactor concepts as applied to the Sandia experiments

Hands-On Training

- Sort Fuel
- Hand Fuel to Load into Experiment
- Load Fuel into Experiment

Experiment 1 Overview

- Approach-to-critical experiment by loading fuel into the fullyreflected assembly
- Same process that is performed for experiments
- Criticality safety parameters that are in play:
 - Mass
 - Moderation
 - Reflection
 - Absorption
- Application to criticality safety:
 - What happens when the number of fuel lumps in an array increases?

Core Loading Experiment Configuration 1

Fuel Rods: 836

 $k \sim 0.95$

Core Loading Experiment Configuration 2

Fuel Rods: 895

 $k \sim 0.97$

~Critical Core Loading

Fuel Rods: 1060

k ~ 1.00 (at 1059.6 rods)

Experiment 2 Overview

- Approach-to-critical experiment by increasing the moderator height in the assembly with a constant fuel loading
- Criticality safety parameters that are in play:
 - Moderation
 - Geometry
 - Mass
- Application to criticality safety:
 - What happens to an array that becomes flooded?

The Fuel Rod Configuration

The blue rods are the difference from the fully-reflected critical array in the first experiment

Moderator Height Experiment Configuration 1

Fuel Rods: 1137

 k_{eff} : ~0.90

Water Depth: 271.6 mm

Moderator Height Experiment Configuration 2

Fuel Rods: 1137

 k_{eff} : ~0.95

Water Depth: 341.3 mm

Moderator Height Experiment at DC

Fuel Rods: 1137

 k_{eff} : ~1.0

Water Depth: 461 mm

Experiment 3 Overview

- Approach-to-critical experiment by moving two roughly equal (and unchanging) fuel lumps toward each other
- This simulates experiments done with a horizontal split table machine
- Criticality safety parameters that were in play:
 - Interaction
 - Moderation
- Application to criticality safety:
 - What happens as two fuel masses are moved progressively closer to one another?
 - What happens when two neighboring fuel masses are moved apart?
 - This experiment is applicable to many accident configurations.

Fuel Rods: 477 (left) + 444 (right) = 921 (total)

Separation: 5.130 cm

Fuel Rods: 477 (left) + 444 (right) = 921 (total)

Separation: 4.275 cm

Fuel Rods: 477 (left) + 444 (right) = 921 (total)

Separation: 3.420 cm

Fuel Rods: 477 (left) + 444 (right) = 921 (total)

Separation: 2.565 cm

Fuel Rods: 477 (left) + 444 (right) = 921 (total)

Separation: 1.710 cm

Fuel Rods: 477 (left) + 444 (right) = 921 (total)

Separation: 0.855 cm

Fuel Rods: 921

Fuel Separation Experiment

This experiment demonstrates the trade-off between increasing interaction between the core halves as they come together and decreasing moderation as the water is squeezed from between the core halves.

Experiment 4 Overview

- Effect of removing fuel rods from the interior of the fuel array
- Replacing fuel rods with water
- Criticality safety parameters that are in play:
 - Mass
 - Moderation
 - Reflection
 - Absorption
- Application to criticality safety:
 - What happens to a compact array of fuel lumps if the array becomes more spread out?

1032 Fuel Rods
0 Water Holes (the source doesn't count)

1028 Fuel Rods 4 Water Holes

1024 Fuel Rods 8 Water Holes

1020 Fuel Rods12 Water Holes

1016 Fuel Rods 16 Water Holes

Approach on Water Holes

Concluding Remarks

- Hands-on criticality experiments class
 - Second week in the NCSP T&EP course for Nuclear Criticality Safety Engineers
 - Conducted Five Classes
- The class consists of four experiments, all using a different approach variable
- The experiments are accompanied by a series of lectures intended to supplement the experiments